Radiation biology deals with the effects of ionising radiation on humans, animals, plants and all other living organisms. If radiation transfers its energy to a cell, it can result in the ionisation of biologically important molecules. Mutations can be caused in the genetic material, DNA, for example, resulting in illnesses such as cancer. If lots of cells are killed by high doses of radiation, radiation syndrome develops. Therefore, one special focus of radiation biology is on research into the mechanisms that lead to diseases such as cancer or radiation syndrome.

The findings from radiation biology are used for the ongoing improvement of radiation protection and emergency preparedness. The objective of radiation protection is to protect people and the environment as effectively as possible from the negative effects of ionising radiation and to prevent damage. ENSI monitors compliance with radiation protection regulations and dose limits in order to protect the population, the environment and personnel working in nuclear installations. It also determines the radiation exposure of power plant personnel and publishes the data in the annual Radiological Protection report. In addition, ENSI monitors the radiation emissions of nuclear installations and compliance with emission limits through its own measurements and inspections. The ENSI automatic dose-rate monitoring network MADUK is also used to safeguard evidence and to measure doses as part of emergency preparedness.
In its five-part series on radiation biology, ENSI highlights the beginnings of this scientific discipline and takes a look further forward at current and future challenges.