

Risk Assessment & Long Term Operation

Mohsen Khatib-Rahbar Energy Research, Inc. 6167 & 6189 Executive Blvd. Rockville, Maryland 20852

January 20, 2011 University of Applied Sciences Brugg, Switzerland

Outline

- □ Risk assessment studies & long-term operation
- Risk Issues for Operating Plants
- Risk of operating versus new designs
- Status of Containment Challenging
 Issues for Operating Plants vs. New Designs
- □ Risk of Operating Plants vs. New plants
- Summary

Risk Assessment Studies

- Probabilistic Safety/Risk Assessment (PSA/PRA) have been performed for most if not every operating plant world-wide. These include:
 - Level-1 (core damage frequency) PSAs for various initiators (internal events, fires, floods, seismic, refueling, low power, shutdown, refueling, etc.)
 - □ Level-2 (severe accident impact of containment integrity and estimation of radiological releases to environment) for all U.S., Swiss and most of other European plants.
 - Level-3 (offsite health and other consequences) for few plants.

Long-term Operation

- Systematic process to guide safety improvement for NPPs. NPPs operate for a long-term (over 40 years).
 - □ Safety is highest priority (i.e., risk of continued operation must remain low).
 - Even though risk studies are not "perfect", nonetheless, the PSA/PRA process has proven very effective in identifying vulnerabilities and in focusing attention:
 - Operators focus on most risk/beneficial backfits and operational/maintenance improvements.
 - Regulators focus on issues that drive safety to protect public health/ safety and the environment.
 - □ Important that PSAs (as for all Swiss plants):
 - Include "non-full power" (outage/refueling) modes of operation.
 - Living (up to date).
 - Follow technically acceptable "standards/guidelines".

Examples of PSA/PRA Limitations

- PSAs model all active (including stand-by) and some passive (pipes, SGs, RPV, etc.) systems, structures, and components (SSCs, operator actions, and impacts of various systems interactions
 - Snap-shots in time, using average failure rates based on actuarial observations and statistics ("short lived" SSCs)
- □ PSAs <u>do not</u> include:
 - □ Time change of service-related characteristics and properties of equipment
 - □ Models for passive or long-lived SSCs. Failure mechanisms such as:
 - Reactor pressure vessel embrittlement;
 - Steam generator tube corrosion and cracking;
 - Environmental qualification for in-containment cables & other electrical equipment; and
 - Fatigue, stress corrosion cracking, and other mechanisms that may affect a variety of metal components,
 - Adequate (generally acceptable) models for computer hardware & "software" reliability.

Risk Issues for Operating Plants

- Results of PSA/PRA studies for operating plants have shown that risk is dominated by:
 - □ Loss of AC power, support system transients
 - Human errors
 - □ Induced LOCAs (pump seal leakage) (PWRs)
 - Internal fires and flooding initiators for some units
 - Seismic initiators for units at location with higher seismicity (most important contributor for Swiss plants)
 - Phenomena/processes that result in early failure of the reactor containment
 - Events that result in containment bypass:
 - PWRs:
 - Steam Generator Tube Rupture (SGTR) as initiator and/or induced
 - Interfacing system breaks outside containment (ISLOCA)
 - BWRs:
 - Unisolated steamline breaks outside containment
 - Other breaks outside containment

Status of Containment Challenging Issues for Operating Plants vs. New Designs

Severe Accident Challenge	Operating Plants	New Designs	
In-Vessel Steam Explosions (α-mode)	CCFP <10 ⁻⁴ . Issue resolved from regulatory perspective	Same as operating plants	
Ex-Vessel Steam Explosions	Dynamic loads on structures: PWRs: not significant to CF BWRs: some significance to CF	Concerns about structures in cavity/pit ("protective" layers) & core catcher. More significant for BWRs.	
High Pressure Reactor Vessel Breach (Vessel Rocketing)	Not significant (CCFP <10 ⁻⁴) for most plants (especially those with lower vessel head penetrations)	Most new designs are equipped with depressurization system. CCFP same or lower.	
High Pressure Reactor Vessel Breach (Direct Containment Heating)	 Extensively studied (NRC) & shown that CCFP <0.10 (PWRs) (Issue resolved from regulatory perspective) (even without induced failure). Limited studies for BWRs (lower CCFP due to ADS and/or induced failures/depressurization). 	Most new designs are equipped with depressurization system. CCFP same or lower (stronger containments).	
Molten Core Concrete Interactions (MCCI)	Significant contributor to containment pressurization & fission product releases (both PWRs & BWRs)	Engineered "methods" (core catcher) to avoid CCI: • Spreading compartment (EPR) • Lower Head Cooling (AP1000) • BiMAC (ESBWR)	

Status of Containment Challenging Issues for Operating Plants vs. New Designs (Cont)

Severe Accident Challenge	Operating Plants	New Designs
Induced Failures of Reactor Coolant System	PWRs: At locations other than SG: 0.95 ≤ CP ≤ 1.0	
PWRs: Hot Leg Nozzles, Hot Leg Pipe, Pressurizer Surge Line, SG Tubes.	Steam Generator Tube Rupture (SGTR): 0 ≤ CP ≤ 0.05 (depending on material, extent of flaws [foreign objects], if secondary side depressurized, etc.). Studies on-going – Issue not yet closed	Similar, if not depressurized.
BWRs: Steam Line Nozzles, Failure of SRVs, and Relief Line Vacuum Breakers (that may result in suppression pool bypass).	BWRs: At all locations (SL, SRVs): 0.90 ≤ CP ≤ 1.0	
Hydrogen Combustion	 Distribution of H₂ difficult to assess (especially for compartmentalized containments). Large, open containments (e.g., Beznau) less susceptible to pocketing (detonable mixtures). PSA/PRA studies show 0 < CCFP < 0.10 Hydrogen combustion mitigated by inerting (Mühleberg), deliberate ignition systems (Leibstadt) or Passive Autocatalytic Recombiners (PARs) (Beznau) 	Engineered systems to promote mixing and prevent combustion: Inert (ABWR, ESBWR), Igniters (AP1000, APWR), PARs (EPR)

Ref: F. Boyd and K. Armstrong (NRC 2009)

Core Damage Frequency: Operating Plants vs New LWRs

Source: D. A. Dube 2009

Large Early Release Frequency: Operating Plants vs New LWRs

Source: D. A. Dube 2009

<u>Summary</u>

- □ Risk of operating plants generally understood:
 - Risk and severe accident issues for the most part, understood, and regulatory closure achieved
 - Research that continues is confirmatory and should helps in reducing lingering uncertainties.
- Safety issues for operating plants understood (even though some uncertainties linger):
 - Risk insights being used increasingly to improve operations, guide backfits & new plant designs
 - Safe long-term operation is being assured through various programs (e.g., accident management programs, aging management programs, etc.)

Summary (Cont.)

- □ Safety improvements for new designs, for the most part, are based or guided by PSA/PRA insights for operating plants
 - Increased separation and diversity
 - Reduction in frequency of interfacing systems LOCAs for PWRs (Refueling Water Storage Pool moved into the containment)
 - Reduction in frequency of high pressure accident scenarios (automatic and improved depressurization systems)
 - Reduction in containment failure probability due to combustion (hydrogen mixing & control systems)
 - Elimination of potential for core concrete interactions and late containment pressurization & failure (lower head cooling or passive cooling of core debris ex-vessel ["core-catchers"] & containment venting for some designs)
 - Generally, strong containments without any potential for direct melt attack (e.g., shell melt-through for some BWR/MARK I)